Yield Stability of Promising Low Nitrogen Tolerance Maize Hybrid

Stabilitas Hasil Calon Varietas Jagung Hibrida Toleran Nitrogen Rendah

  • Slamet Bambang Priyanto Indonesian Cereals Research Institute
  • Noladhi Wicaksana Padjadjaran University
  • Meddy Rachmadi Padjadjaran University
Keywords: Hybrid maize, Low nitrogen, Yield stability

Abstract

The improvement of low nitrogen tolerant hybrid maize face on genotype x environment the genotype x environment interaction caused a genotype unable to maintain its appearance under suboptimal conditions. it caused the breeders difficult to choose varieties that are stable at optimal and suboptimal conditions. The using of simultaneous stability analysis methods can provide more authentic stability information. This study aims to 1) determine the yield stability of the promising low N tolerance hybrid maize varieties, 2) to obtain varieties that have high yield and stability and under optimal and sub-optimal conditions. This research was conducted at Bajeng Experimental farm, Gowa, South Sulawesi. The research was arranged in a split-plot design with two replications. Three levels of fertilizer N (N0 = 0 kg N ha-1, N1 = 100 kg N ha-1 and N2 = 200 kg N ha-1) as the main plot and 39 genotypes of maize (36 hybrids resulting from crosses of low N and 3 checks varieties Nasa 29, Bisi 18 and Jakorin 1) as the subplot. The variable measured was grain yield. The yield stability analyses were performed by Francis and Kannenberg, Finlay and Wilkinson, Eberhart and Russel, and GGE Biplot methods. The results showed that there were no genotypes stable in overall the four methods, but three genotypes considered as stable genotype based on two methods. H5, H6 and H15 genotype were the genotypes with high stability and high yield. The three genotypes had the opportunity to be released as a low Nitrogen tolerant maize hybrid.

Downloads

Download data is not yet available.

Author Biographies

Slamet Bambang Priyanto, Indonesian Cereals Research Institute

Indonesian Cereals Research Institute

Noladhi Wicaksana, Padjadjaran University

Department of Plant Cultivation, Faculty of Agriculture 

Meddy Rachmadi, Padjadjaran University

Department of Plant Cultivation, Faculty of Agriculture 

References

Ajala SO, Olaniyan AB, Olayiwola MO, Job AO. 2018. Yield improvement in maize for tolerance to low soil nitrogen. Plant Breed. 137(2):118–126. doi:10.1111/pbr.12568.

Alwala S, Kwolek T, McPherson M, Pellow J, Meyer D. 2010. A comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. F Crop Res. 119(2–3):225–230. doi:10.1016/j.fcr.2010.07.010.

Arunkumar B, Gangapp E, Ramesh S, L. Savithramma D, Nagaraju N, Lokesha R. 2020. Stability Analysis of Maize (Zea mays L.) Hybrids for Grain Yield and Its Attributing Traits Using Eberhart and Russel Model. Curr J Appl Sci Technol. 39(1):52–63. doi:10.9734/cjast/2020/v39i130480.

Badu-Apraku B, Fakorede B, Akinwale R. 2020. Application of the GGE Biplot as a Statistical Tool in the Breeding and Testing of Early and Extra-Early Maturing Maize in Sub-Saharan Africa. Crop Breeding, Genet Genomics. 2(3):1–39. doi:10.20900

/cbgg20200012.

Belete T, Tulu L, Senbetay T. 2020. Evaluation of finger millet (Eleusine coracana (L.) Gaertn.) Varieties at Different Locations of Southwestern Ethiopia. J Genet Environ Resour Conserv. 8(2):9–17.

Bujak H, Nowosad K, Warzecha R. 2014. Evaluation of maize hybrids stability using parametric and non-parametric methods. Maydica. 59(2):170–175.

Eberhart SA, Russel WA. 1966. Stability paramenters for comparing varieties. Crop Sci. 6(3):36–40.

Finlay KW, Wilkinson G. 1963. The analysis of adaptation in a plant breeding programme. Aust J Agric Res. 14:742–754.

Francis TR, Kannenberg LW. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can J Plant Sci. 58:1029–1034.

Herawati, Efendi R, Azrai M. 2018. Indeks Toleransi dan Evaluasi Karakter Seleksi Jagung Hibrida pada Pemupukan Nitrogen Rendah. Penelit Pertan. 2(3):173–180.

Jambormias E. 2011. Keragaan Grafis GGE-Biplot untuk Evaluasi Keragaan Genotipe-genotipe dan Perubahan Lingkungan Bercekaman di Pulau-Pulau Kecil. In: Prosiding Seminar Nasional Pengembangan Pulau-Pulau Kecil. Universitas Pattimura. Ambon. p. 1–7.

Kandiannan K, Anandaraj M, Prasath D, Zachariah TJ, Krishnamurthy KS. 2015. Evaluation of short and tall true turmeric (Curcuma longa) varieties for growth , yield and stability. Indian J Agric Sci. 85(5):718–720.

Kartina N, Purwoko BS, Dewi IS, Wirnas D, Sugiyanta. 2019. Genotype by environment interaction and yield stability analysis of doubled haploid lines of upland rice. Sabrao J Breed Genet. 51(2):191–204.

Kendal E. 2016. GGE Biplot Analysis of Multi-Environment Yield Trials in Barley (Hordeum vulgare L.) Cultivars. Ekin J Crop Breed Genet. 2(1):90–99.

Kendal E, Sayar M, Tekdal S, Aktas H, Karaman M. 2016. Assessment of the Impact of Ecological Factors on Yield and Quality Parameters in Triticale Using Gge Biplot and Ammi Analysis. Pak J Bot. 48(5):1903–1913.

Kizilgeci F. 2018. Assessing the yield stability of nineteen chickpea (Cicer Arietinum L.) genotypes grown under multiple environments in south-eastern Anatolia, Turkey. Appl Ecol Environ Res. 16(6):7989–7997. doi:10.15666/aeer/1606_79897997.

Krisnawati A, Basunanda P, Nasrullah N, Adie MM. 2016. Analisis Stabilitas Hasil Genotipe Kedelai Menggunakan Metode Additive Main Effect and Multiplicative Interaction (AMMI). Inform Pertan. 25(1):41. doi:10.21082/ip.v25n1.2016.p41-50.

Kristamtini. 2016. Stabilitas dan Adaptabilitas Varietas Padi Merah Lokal Daerah Istimewa Yogyakarta. Bul Plasma Nutfah. 16(2):103. doi:10.21082/blpn.v16n2.2010.p103-106.

Lestari AP, Lubis E, Supartopo, Suwarno. 2012. Keragaan Karakter Agronomi dan Stabilitas Hasil Padi Gogo Pada Sembilan Lokasi Percobaan. J Ilmu Pertan dan Perikan. 1(1):1–7.

Mohammadi R, Farshadfar E, Amri A. 2015. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran. Crop J. 3(6):526–535. doi:10.1016/j.cj.2015.08.003. http://dx.doi.org/10.1016/j.cj.2015.08.003.

Mustamu YA, Tjintokohadi K, Grüneberg WJ, Karuniawan A, Ruswandi D. 2018. Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability. Chil J Agric Res. 78(4):461–469. doi:10.4067/S0718-58392018000400461.

N’zué B, Cissé B, Djédji BC, Kouakou AM, Dibi KEB, N’guettag APS, Zohouri P. 2017. Stability study of some cassava (Manihot esculenta.crantz) varieties relative to the harvest period in Côte D’Ivoire. J Glob Agric Ecol. 7(1):16–24.

Noerwijati K, Nasrullah, Taryono, Prajitno D. 2014. Fresh tuber yield stability analysis of fifteen cassava genotypes across five environments in East Java (Indonesia) using GGE biplot. Energy Procedia. 47:156–165. doi:10.1016/j.egypro.2014.01.209. http://dx.doi.org/10.1016/j.egypro.2014.01.209.

Norhayati S, D FFM, Mohamad O, B SNS, Shamsiah A. 2016. Evaluation of Genotype x Environment Interaction on Morphological Characteristics of Eight Selected Labisia pumila var. alata Clones (Kacip Fatimah) by Francis and Kannenbergs Method. Int J Environ Agric Res. 2(11):31–37.

Ogunniyan DJ, Makinde SA, Omikunle SO. 2018. Stability Analyses of Fibres Yield of Kenaf Using Multiple Biometrical Models. Cercet Agron Mold. 51(1):51–63. doi:10.2478/cerce-2018-0005.

Oral E, Kendal E, Dogan Y. 2018. Selection the Best Barley Genotypes To Multi and Special Selection the Best Barley Genotypes To Multi and Special Environments By Ammi and. Fresenius Environ Bull. 27(7):5179–5187.

Patti PS, Kaya E, Silahooy C. 2018. Analisis Status Nitrogen Tanah Dalam Kaitannya Dengan Serapan N Oleh Tanaman Padi Sawah Di Desa Waimital, Kecamatan Kairatu, Kabupaten Seram Bagian Barat. Agrologia. 2(1):51–58. doi:10.30598/a.v2i1.278.

Prajapati KN, Kathiria KB. 2018. Genotype×Environment Interactions and Stability for Grain Yield and its Components in WBPH Tolerant Rice (Oryza sativa L.) Genotypes. Int J Bio-resource Stress Manag. 9(1):137–141. doi:10.23910/ijbsm/2018.9.1.3c0293.

Pramadio L, Saptadi D, Soegianto A. 2018. Penampilan Karakter Agronomi Genotipe Potensial Buncis Polong Kuning (Phaseoulus vulgaris L.) Pada Ketinggian Tempat yang Berbeda. Plantropica J Agric Sci. 3(1):23–28.

Purbokurniawan, Purwoko BS, Wirnas D, Dewi IS. 2014. Potensi dan Stabilitas Hasil , serta Adaptabilitas Galur-galur Padi Gogo Tipe Baru Hasil Kultur Antera Yield Potential and Stability , and Adaptability of New Plant Type of. J Agron Indones. 42(1):9–16.

Rafii MY, Jalani BS, Rajanaidu N, Kushairi A, Puteh A, Latif MA. 2012. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments. Genet Mol Res. 11(4):3629–3641. doi:10.4238/2012.October.4.10.

Rahayu S, Dewi AK, Yulidar, Wirnas D, Aswidinnoor H. 2013. Analisis Stabilitas dan Adaptabilitas Beberapa Galur Padi Dataran Tinggi Hasil Mutasi Induksi. A Sci J Appl Isot Radiat. 9(2):81–90.

Rasyad A, Idwar. 2010. Interaksi genetik x lingkungan dan stabilitas komponen hasil berbagai genotipe Kedelai di Provinsi Riau. J Agron Indones. 38(1):25–29. doi:10.24831/jai.v38i1.1673.

Satoto, Rumanti IA, Widyastuti Y. 2016. Yield stability of new hybrid rice across locations. Agrivita. 38(1):33–39. doi:10.17503/agrivita.v38i1.675.

Sitaresmi T, Susanto U, Pramudyawardani EF, Nafisah, Nugraha Y, Sasmita P. 2020. Genotype x environment interaction of rice genotype. IOP Conf Ser Earth Environ Sci. 484(1). doi:10.1088/1755-1315/484/1/012028.

Sitaresmi T, Suwarno WB, Gunarsih C, Nugraha Y, Sasmita P, Daradjat AA. 2019. Comprehensive Stability Analysis of Rice Genotypes through Multi-Location Yield Trials using PBSTAT-GE. SABRAO J Breed Genet. 51(4):355–372.

Sowmya HH, Kamatar MY, Shanthakumar G, Brunda SM, Shadakshari TV, Showkath Babu BM, Singh Rajput S. 2018. Stability Analysis of Maize Hybrids using Eberhart and Russel Model. Int J Curr Microbiol Appl Sci. 7(2):3336–3343. doi:10.20546/ijcmas.2018.702.399.

Sundari T, N Nugraheni. 2016. Interaksi Genotipe x Lingkungan dan Stabilitas Karekter Agronomu Kedelai (Glycine max (L.) Merrill). J Biol Indones. 12(2):231–240.

Susanto U, Rohaeni WR, Johnson SB, Jamil A. 2015. Gge biplot analysis for genotype x environment interaction on yield trait of high Fe content rice genotypes in indonesian irrigated environments. Agrivita. 37(3):265–275. doi:10.17503/Agrivita-2015-37-3-p265-275.

Syafruddin, Azrai M, Suwarti. 2013. Seleksi Genotipe Jagung Hibrida Toleran N Rendah. Pros Insinas 2012.:73–80.

Weber VS, Melchinger AE, Magorokosho C, Makumbi D, Bänziger M, Atlin GN. 2012. Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Sci. 52(3):1011–1020. doi:10.2135/cropsci2011.09.0486.

Widyastuti Y, Satoto, Rumanti IA. 2013. Pemanfaatan analisis regresi dan AMMI untuk evaluasi stabilitas hasil genotipe padi dan pengaruh interaksi genetik dan lingkungan. Inform Pertan. 22(1):21–28.

Yan W. 2001. GGEbiplot-A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J. 93(5):1111–1118. doi:10.2134/agronj2001.9351111x.

Yasin HG, Santoso SB, Sunarti S. 2012. Analisis Stabilitas Hasil Dengan Model Eberhart-Russel ’ S Dan Biplot Pada Uml Jagung Qpm. J Inform Pertan. 21(1):51–57.

Zanetta CU, Waluyo B, Rachmadi M, Karuniawan A. 2015. Oil Content and Potential Region for Cultivation Black Soybean in Java as Biofuel Alternative. Energy Procedia. 65:29–35. doi:10.1016/j.egypro.2015.01.025. http://dx.doi.org/10.1016/j.egypro.2015.01.025.

Published
2021-06-28
How to Cite
Priyanto, S., Wicaksana, N. and Rachmadi, M. (2021) “Yield Stability of Promising Low Nitrogen Tolerance Maize Hybrid”, AGROSAINSTEK: Jurnal Ilmu dan Teknologi Pertanian, 5(1), pp. 44-53. doi: 10.33019/agrosainstek.v5i1.203.
Abstract viewed = 50 times
PDF downloaded = 39 times